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Abstract
The theory of scattering of a focused pulsed light beam from a dielectric
nanofibre is developed. The nanofibre radius is assumed to be of the order
of the light wavelength but much less than the beam radius. An analytical
solution of the problem in terms of rapidly converging series of the Bessel and
Hankel functions is derived. It is shown that the result can be described as
excitation of the nanofibre transient normal modes for which the dispersion
curves are obtained. These findings can be used for optimizing both the
photoluminescence output and polarization, as well as the laser action of a
nanofibre.

1. Introduction

Recent progress in the fabrication of submicron-sized structures has allowed one to grow
optical fibres, both inorganic and organic, having transverse dimensions of the order of
100 nm. They have been given the name nanofibres or nanowires, and currently they can be
grown from InP [1, 2], ZnO [3], GaN [4], CdS [5], different p-phenylene oligomers [6, 7]
as well as functionalized p-phenylene molecules [8], and they can be fabricated from
silica [9]. These structures demonstrate promising optical properties in photoluminescence,
photodetection [2, 10] and waveguiding [9, 11–13] and can operate as an active medium for
laser generation [3–5, 12, 14–16]. All these factors allow one to believe that nanofibres will
find broad applications in future submicron optical and optoelectronic devices.

Although the electrodynamical problems for such structures can be solved numerically,
by direct solving of Maxwell’s equations, the underlying physics can be obscured in that
approach. In contrast with that, an analytical solution, when available, significantly simplifies
the analysis. The exact solution of the problem of diffraction of a plane electromagnetic
wave at perpendicular incidence by a dielectric cylinder of infinite length was first given
by Lord Rayleigh [17, 18]. Much later, that result was generalized to the case of oblique
incidence [19]. In the following studies [20–23], it has been noticed that the field amplitudes
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at perpendicular incidence exhibit resonances at certain frequencies that have been used for a
precise determination of fibre diameters as well as of their deviation from circularity [21, 24].
These resonances have been obtained numerically for very large values of the size parameter,
kda = 2πa/λd with a the cylinder radius and λd the wavelength in the dielectric, that does not
allow the use of that analysis in other domains of kda.

Recently, we have obtained an exact analytical solution for the problem of light scattering
from a dielectric semicylinder placed on an ideally reflecting plane [25]. This model system can
be used for the description of scattering from nanofibres grown on a substrate. However in all
the studies mentioned above the incident radiation was assumed to be a plane monochromatic
electromagnetic wave, whereas in many experiments carried out with nanofibres one deals with
focused pulsed laser beams. It is the aim of the present paper to bridge this gap in the theory.
We consider two different models for a nanofibre: (i) a dielectric cylinder, and (ii) a dielectric
semicylinder placed on an ideally reflecting plane. It should be noted that in the general case
the problem of scattering of a focused beam by a cylinder is rather complicated [26]. In this
paper, assuming that the nanofibre diameter is much less than the focus diameter and applying
the two-dimensional Fourier transform we obtain the complete solution of the problem for
oblique incidence in terms of rapidly converging series of the Bessel and Hankel functions. We
analyse the nanofibre normal modes corresponding to the resonances in the field components
and calculate their dispersion curves in the domain of small size parameters. Although the
solution obtained describes the fields in both the nanofibre interior and exterior, we focus
our attention on the electric field energy inside the nanofibre, which is directly related to its
photoluminescence and laser action. We show that nanofibre excitation can be clearly described
in terms of normal modes which are transient either along the nanofibre axis or in time.

The paper is organized as follows. In section 2.1 we present the basic equations which are
necessary for further consideration. Section 2.2 is devoted to the discussion of the nanofibre
normal modes and their dispersion curves. In section 2.3 we derive the expression for the
electric field energy inside the nanofibre. In section 2.4 we extend the approach considered
above to a semicylinder on an ideally reflecting surface. The results obtained are illustrated by
some numerical calculations in section 3. In section 4 we summarize the main results of this
work.

2. Theory

2.1. Basic equations

Let us assume that a nanofibre has a circular cross-section of radius a, the beam axis crosses
the nanofibre axis, and the pulse shape and the beam profile are Gaussian. We choose the z
axis along the nanofibre axis and the y axis in the plane containing both the z axis and the
beam axis (see figure 1). Let both the nanofibre and surrounding medium be isotropic and be
characterized by the dielectric functions ε2 and ε1, respectively. Then the incident wave electric
field can be written as

Ei(x, y, z, t) = Ei
0(x, y, z, t) exp(−iq1y + iβ0z − iω0t), (1)

where the field amplitude is given by2

Ei
0(x, y, z, t) = E0 exp

[
− x2 + (y sinα + z cosα)2

2σ 2

]
exp

(
− t2

2τ 2

)
(2)

2 It is assumed here that the beam radius is much larger than the wavelength and the pulse duration is much longer
than the period of the field oscillations so that the field of the form (1) approximately satisfies the wave equation.
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Figure 1. Geometry of the problem.

with −q1 and β0 the projections of the wave vector onto the axes y and z, respectively, ω0 the
frequency of the incident wave, α the angle of incidence with respect to the y axis, and σ and τ
the radius and pulse duration of the light beam. A similar expression is valid for the magnetic
field of the incident beam.

We shall consider the case where the beam radius is much larger than the nanofibre radius,
σ � a. Then, in the vicinity of the nanofibre, (2) is reduced to the following one3:

Ei
0(z, t) ≈ E0 exp

(
− z2 cos2 α

2σ 2

)
exp

(
− t2

2τ 2

)
. (3)

On the other hand, the beam radius will be assumed to be much less than the nanofibre length.
In such a case one can neglect the edge effects and consider the nanofibre as infinitely long.

The total electric field can be written in the form

E =
{

Ei + Es if r > a;
Ef if r < a,

(4)

where Es and Ef are the electric field vector of the scattered field and the field inside the
nanofibre, respectively. A similar expression is valid for the magnetic field vector. The fields
Es and Ef can be found in terms of the z component of the Hertz vector, ψ , satisfying the scalar
wave equation [27]. We shall seek ψ in the form of the Fourier integral

ψ(x, y, z, t) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ψ̃(x, y; β,ω)eiβz−iωt dβ dω, (5)

where the Fourier-transformed quantity ψ̃(x, y; β,ω) can be represented as a sum of
two contributions associated with TM (transverse magnetic) and TE (transverse electric)
polarizations. The corresponding scalar functions are found as expansions

ψ̃TM(r, θ; β,ω) = 1

q2
j

∞∑
n=0

Zn(q jr)[an(β, ω) sin(nθ)+ bn(β, ω) cos(nθ)] (6)

and

ψ̃TE(r, θ; β,ω) = 1

q2
j

∞∑
n=0

Zn(q jr)[cn(β, ω) sin(nθ)+ dn(β, ω) cos(nθ)], (7)

where the functions Zn(X) are determined as

Zn(X) =
{

H (1)
n (q1r) if r > a;

Jn(q2r) if r < a,
(8)

with

q j =
√
ω2

0

c2
ε j − β2

0 , (9)

3 This approximation is valid outside the nanofibre region |z| � a tanα.
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Jn and H (1)
n are Bessel functions of the first kind and Hankel functions, respectively, and we

have introduced the polar coordinates (r, θ) in the xy plane. Here, the subscript j labels
different media: j = 1 corresponds to the surrounding medium, whereas j = 2 denotes
the nanofibre interior.

The continuity of the tangential components of the total fields, Eθ , Ez , Hθ , and Hz,
across the boundary r = a leads to the equations for the coefficients af

n, bf
n , cf

n, d f
n , and as

n,
bs

n , cs
n , ds

n , where the superscripts f and s refer to the fields inside the fibre and outside it,
respectively. Finally, one obtains the equations for the Fourier-transformed quantities which
formally coincide with those derived for an incident plane monochromatic electromagnetic
wave [25] if instead of its field one takes the Fourier transform of (1),

Ẽi(y; β,ω) = Ẽi
0(β, ω) exp(−iq1y) (10)

with

Ẽi
0(β, ω) = E0

2πστ

cosα
exp

[
− (β − β0)

2σ 2

2 cos2 α

]
exp

[
−(ω − ω0)

2τ 2

2

]
. (11)

Then the Fourier-transformed electric field components in the nanofibre interior written in
the cylindrical coordinates (r, θ, z) can be represented as

Ẽμ(r, θ; β,ω) = Ẽ i
0(β, ω)

∞∑
n=0

[
Aμn(r; β,ω) sin(nθ)+ Bμn(r; β,ω) cos(nθ)

]
, (12)

where the subscript μ runs over the components r , θ , and z, and the functions Aμn and Bμn are
given in the appendix. Analogous expressions can be found for the field components outside
the nanofibre (see [25] for detail).

Taking the inverse Fourier transform of (12),

Eμ(r, θ, z, t) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
Ẽμ(r, θ; β,ω)eiβz−iωt dβ dω, (13)

one obtains the solution of the problem under consideration. The integrand in (13) has poles
given by the zeros of the denominators Dn(β, ω) in (A.7)–(A.10). On the other hand, these
zeros determine the allowed values of pairs (β, ω) for the electromagnetic field in a free
nanofibre, i.e. its normal modes [27].

2.2. Nanofibre normal modes

Among the solutions of the equations

Dn(β, ω) = 0, (14)

there are those which are given by pairs of real quantities (βnm, ωnm). They correspond to
the waveguiding (bound) modes. Such modes provide a complete description of the light
propagation along the fibre in the steady-state regime far from the light source [28]. Besides
that, (14) has solutions for which either β or ω, or both have imaginary parts, i.e.,

β = βr + iβ i, (15)

ω = ωr − iωi. (16)

The contribution of such poles to the integral (13) leads to the transients along the fibre
length or in time, or in both length and time, respectively. If β i is small, the modes of the first
type can propagate over long distances and their portions localized within or near the fibre core
are known as leaky modes [28]. In the following, we shall call the first-type modes space-
decaying modes, and the second-type ones time-decaying modes.

4



J. Phys.: Condens. Matter 19 (2007) 236220 V G Bordo

(b)(a)

Figure 2. Dispersion curves of the SD modes: (a) for the real parts of the mode propagation
constants; (b) for their imaginary parts. The modes with very large values of β i are not shown in
the figure. ε1 = 1, ε2 = 2.89.

(b)(a)

Figure 3. Dispersion curves of the TD modes: (a) for the real parts of the mode frequencies; (b) for
their imaginary parts which fall into the range |ωia/(2πc)| � 0.1. ε1 = 1, ε2 = 2.89.

Figure 2(a) shows the dispersion curves ω(βr ) calculated numerically for the space-
decaying modes, SDnm , with n = 0–3 assuming ε1 = 1 and ε2 = 2.89 corresponding to
an isotropic para-hexaphenyl film, and represented in dimensionless variables. The dispersion
curves for the bound modes are also shown in this figure. They are disposed between the
light lines ω = cβ/

√
ε1 (LL1) and ω = cβ/

√
ε2 (LL2), and are denoted as it is accepted in

optical waveguide theory [28]. The dispersions for the imaginary parts of the zeros for the
SD modes, ω(β i), are shown in figure 2(b). Figure 3(a) represents the dispersion relations
ωr (β) for n = 0–3 calculated for the time-decaying modes, TDnm . The dispersions of the
corresponding imaginary parts, ωi(β), for the modes which are not strongly decaying are shown
in figure 3(b). The subscript m enumerates the modes with a given n according to the order they
approach the axis βr for the SD modes or the axis ωr for the TD modes. One can observe that
some of these modes, both space- and time-decaying, can be considered as a continuation of
waveguiding modes beyond the cutoff which coincides with the light line LL1. The imaginary
parts of the propagation constants or frequencies for such modes increase with the deviation of
the corresponding real parts from the cutoff.
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2.3. Calculation of the field inside the nanofibre

The integral (13) which determines the field components inside the nanofibre can be written in
terms of the dimensionless parameters

β̄ = βa, ω̄ = ω

c
a, z̄ = z

a
, t̄ = ct

a
. (17)

When carrying out the integration, one can take into account that the function Ẽ i
0(β̄, ω̄)

in the integrand is essentially different from zero around its maximum at β̄ = β̄0 ≡ β0a and
ω̄ = ω̄0 ≡ ω0a/c. The widths of the corresponding peak along the variables β̄ and ω̄ are
determined by the quantities

�β̄ =
√

2a cosα

σ
(18)

and

�ω̄ =
√

2a

cτ
, (19)

respectively. For typical experimental parameters, a � 100 nm, σ � 2.5 μm, and τ � 100 fs,
one has �β̄ � 0.05 and �ω̄ � 0.005 (correspondingly, �ω̄/(2π) � 0.0008). On the other
hand, the factors in front of the coefficients af

n, bf
n, cf

n , and d f
n in (A.1)–(A.6), as well as the

numerators in (A.7)–(A.10), vary significantly on the scales β̄ ∼ 1 and ω̄ ∼ 1. The remaining
factors, D−1

n (β̄, ω̄), vary most rapidly in the vicinity of the roots of (14), (β̄nm, ω̄nm), and the
scales of this variation along the variables β̄ and ω̄ are determined by the quantities β̄ i

nm and
ω̄i

nm , respectively. Turning to figures 2 and 3, one can conclude that everywhere in the radiation
region (i.e. to the left from the light line LL1), except for a very narrow interval near the cutoff4,
one has β̄ i

nm � �β̄ and ω̄i
nm � �ω̄. This means that in the case of non-grazing incidence,

when performing the integration in (13) one can take the functions Aμn(β, ω) and Bμn(β, ω)

off the integral at the point (β0, ω0). The remaining integration leads to the result

Eμ(r, θ, z, t) = E i
0(z, t) exp(iβ0z − iω0t)

×
∞∑

n=0

[
Aμn(r; β0, ω0) sin(nθ)+ Bμn(r; β0, ω0) cos(nθ)

]
, (20)

where E i
0(z, t) is the amplitude of the incident wave, (3). In other words, under typical

experimental conditions the illumination by a pulsed light beam can be treated as the case
of an incident plane monochromatic wave if instead of its amplitude, E0, one substitutes the
pulsed beam envelope function, E i

0(z, t).
Using (20) one can calculate the distribution of the electric field energy in the nanofibre

interior,

W (z, t) = ε2

16π

∫ 2π

0
dθ

∫ a

0

∑
μ

|Eμ(r, θ, z, t)|2rdr. (21)

This quantity is found as

W (z, t) = W0 exp

(
− z2 cos2 α

σ 2

)
exp

(
− t2

τ 2

)
(22)

with

W0 = ε2

8
E2

0

∞∑
n=0

(
3

2
− τn

) ∑
μ

∫ a

0

[
(1 − δn0)

∣∣Aμn(r; β0, ω0)
∣∣2 + ∣∣Bμn(r; β0, ω0)

∣∣2
]
r dr,

(23)

where δn0 is the Kronecker delta and τn is defined by (A.17).
4 Note that in figures 2(b) and 3(b) the cutoff corresponds to the axes a/λ and βa, respectively.
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If the frequency of the incident light, ω0, falls into the nanofibre absorption band,
the energy distribution given by (22), after some relaxation processes, leads eventually to
photoluminescence from the nanofibre. If in experiment one varies either the angle of incidence
of the light beam at a fixed frequency, or tunes the light frequency at a fixed angle of incidence,
the photoluminescence output will also change. In the former case, the energy (22) has maxima
at the values β0 = βr

nm corresponding to the space-decaying modes. In the latter case, the
maxima in energy occur at ω0 = ωr

nm and correspond to the time-decaying modes. The widths
of those peaks are determined by the quantities β i

nm and ωi
nm , respectively5.

It is worthwhile to note that both SD and TD modes which correspond to the minima of
the determinants Dn can manifest themselves also as resonances in the total intensity of light,
Stot, scattered by the nanofibre [25]. As follows from the conservation of total electromagnetic
energy, the maximum of the total field energy inside the nanofibre should correlate with the
minimum of this quantity outside it. However, there is no such relation between the quantities
W0 and Stot as the latter one is determined by the asymptotics of the scattered field in the far
zone.

2.4. Semicylinder on an ideally reflecting surface

The approach developed above can be equally applied to the nanofibre model represented by a
circular semicylinder placed on an ideally reflecting plane [25]. In such a case, one can use (20)
with the following substitutions:

Aμn → 2Aμn, Bμn → 0. (24)

Then the sum over the modes which determines the quantity W0 starts from n = 1,
indicating that the modes with n = 0 are not excited in the nanofibre. The suppression of
such modes is conditioned by the presence of the reflecting plane.

Let us consider the special case of normal incidence with respect to the substrate surface
(α = 0). In such a case the equations for TM and TE polarizations are completely
separated [18]. This means that for TM incident wave polarization one can set in (7)
cn = dn = 0. As a result, taking into account that β0 = 0 one obtains the only non-zero
coefficient Azn . As it is seen from (6), this quantity dictates the sin(nθ)-dependence of the nth
electric field mode. On the other hand, the incident wave electric field is determined by the
factor

e−iq1r sin θ = J0(q1r)+ 2
∞∑

m=1

J2m(q1r) cos(2mθ)− 2i
∞∑

m=1

J2m−1(q1r) sin[(2m − 1)θ ]. (25)

It follows from here that the incident wave can excite in the semicylinder only the modes
with odd numbers n. An analogous consideration of TE incident wave polarization shows that
both even and odd modes can be excited at normal incidence.

A similar selection rule occurs for the modes which are excited at normal incidence and
can be observed in scattering. The total intensity scattered in all directions in the far zone per
unit length of the nanofibre is found as follows [25]:

Stot = ω

2πq2
1r

∞∑
n=1

(ε1 | as
n |2 + | cs

n |2), (26)

where the coefficients as
n and cs

n determine the sin(nθ)-dependence of the scalar functions ψ̃TM

and ψ̃TE, (6) and (7), in the surrounding medium. For TM polarization, cs
n = 0 and one obtains

5 Besides the maxima relatively the light frequency discussed here, there may be also maxima originating from
resonances in ε2(ω).
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Figure 4. (a) W0 as a function of β0 calculated for ε1 = 1, ε2 = 2.89, and ω0a/(2πc) = 0.35. TM
incident wave polarization. (b) Same as (a) but for a semicylinder on an ideally reflecting surface.

the selection rule as above. For TE polarization, as
n = bs

n = 0, whereas the component H i
z in

the incident wave has the θ -dependence given by (25). This means that, as in the case of TM
polarization, only the modes with odd n can be observed in scattering.

3. Numerical results

Figure 4(a) shows the variation of W0 with β0 scanning the radiation region calculated for TM
incident wave polarization with ω0a/(2πc) = 0.35 and with an account of the terms n = 0–10
in (23). The energy drop at β0a ≈ 2.2 originates from the approach to the cutoff at which
q1 = 0. The individual contributions from the terms with n = 0, 1, 2, and 3 are also shown in
the figure, illustrating their rapid decrease with n. The curve corresponding to n = 1 exhibits
a peak at β0a ≈ 1.8 which is also seen in the total energy curve. Turning to figure 2(a) one
can identify it as being originating from the mode SD12. The contributions of the modes SD11

and SD13 are not pronounced because of the large values of β i corresponding to them. A
broader maximum to the left from the peak SD12 arises from the mode SD21. The curve n = 2
also shows an increase corresponding to the mode SD22 just below the cutoff which is not
pronounced in the total energy. For comparison, figure 4(b) illustrates the excitation of a semi-
cylindrical nanofibre placed on an ideally reflecting surface. In such a case the zeroth term does
not contribute to W0 and the contribution of the term with n = 2 tends to zero with decreasing
β0 due to the selection rule considered in section 2.4. As a result, the peak corresponding to
the SD12 mode becomes more distinct, and the mode SD22 manifests itself as a shoulder at the
cutoff.

Another situation when the light beam frequency is varying at a fixed angle of incidence
is illustrated in figure 5(a) for the case of a TM-polarized beam normally incident (α = 0) on
a cylindrical fibre. In this case the peaks in W0 correspond to the time-decaying modes. Their
origin can be deduced when comparing the positions of maxima which occur for different n
with the mode frequencies at β = 0 in figure 3(a). In the case of a semicylinder placed on
an ideally reflecting plane, only modes with odd n can be excited, due to the selection rule
(figure 5(b)). These modes are also displayed in the spectrum of scattered light (figure 6). It
should be noted that the modes distinct from those for TM polarization are pronounced in the
energy spectrum when the nanofibre is excited by a normally incident TE-polarized light beam
(not shown).

The data represented above allow one to calculate the excitation polarization ratio, ρ,
defined as

ρ = W TM
0 − W TE

0

W TM
0 + W TE

0

. (27)

8
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Figure 5. (a) W0 as a function of ω0 for normal incidence calculated for ε1 = 1, ε2 = 2.89. TM
incident wave polarization. (b) Same as (a) but for a semicylinder on an ideally reflecting surface.

Figure 6. The intensity of light scattered in all directions in the far zone from a semicylinder placed
on an ideally reflecting plane as a function of ω0. Normal incidence, TM incident wave polarization.
ε1 = 1, ε2 = 2.89.

Figure 7. The excitation polarization ratio for a cylinder versus a semicylinder on an ideally
reflecting surface: (a) as a function of β0; (b) as a function of ω0 at normal incidence. ε1 = 1,
ε2 = 2.89.

The results obtained for the variation of either the angle of incidence or the beam frequency
are shown in figures 7(a) and (b), respectively. One can see a dramatic change of both
the polarization ratio values and its general behaviour introduced by the reflecting substrate.
These remarkable variations of ρ display the mode structure of the electromagnetic field inside
the nanofibre. A sharp peak in figure 7(a) is associated with the mode SD12, whereas the
pronounced maximum and minimum in figure 7(b) originate from different positions of the
mode peaks in TM versus TE polarization.

It is interesting to note that the value of the polarization ratio at ω0 = 0, ρ0, corresponds to
the static limit and can be obtained as follows. The electric field amplitude inside the nanofibre

9
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being in the external homogeneous electric field E0 is found as [29]

E‖ = E0 (28)

or

E⊥ = 2ε1

ε1 + ε2
E0 (29)

depending on whether the vector E0 is directed parallel or perpendicular to the fibre axis.
Taking here ε1 = 1 and ε2 = 2.89, one gets the value ρ0 ≈ 0.58.

4. Conclusions

In this paper, we have developed the theory of scattering of a pulsed Gaussian light beam from a
dielectric nanofibre. We have applied this theory to two models of a nanofibre. We have shown
that both the electric field energy penetrated into the nanofibre and the intensity of the scattered
light can be clearly described in terms of excitation of the nanofibre normal modes which,
in contrast with the waveguiding modes, have either complex propagation constant or complex
eigenfrequency. We have obtained the dispersion curves for these so-called space-decaying and
time-decaying modes in the domain of small size parameters. This has helped us to interpret
the dependence of the energy inside the nanofibre and of the integral scattered intensity on the
beam incidence angle and frequency. It has been demonstrated that it is sufficient to calculate
the first few terms in the field expansions to obtain an approximate solution. As a result, the
mode structure of the fields contains only a few resonances. This situation differs remarkably
from the calculations in the domain of large size parameters where the field distribution is much
structured [22, 23].

The comparative analysis of the two models of a nanofibre has revealed that the ideally
reflecting substrate suppresses the zeroth-order modes which correspond to an isotropic in
the xy plane distribution of the electric field. Besides that, the presence of the reflecting
plane introduces some selection rules at normal incidence. In the case of TM incident wave
polarization, only odd modes can be excited inside the nanofibre. The same rule occurs for the
integral intensity of the scattered light in the far zone for both TM and TE polarizations.

This study thus can be used for finding favourable conditions for energy input into the
nanofibre, its photoluminescence efficiency and polarization.

Acknowledgments

The author is grateful to H-G Rubahn for hospitality during his stay at SDU. The financial
support of this work from Forskningsrådet for Teknologi og Produktion (Denmark) is also
gratefully acknowledged.

Appendix. Definition of the functions Aµn and Bµn

The functions Aμn and Bμn which determine the Fourier transform of the electric field
components in the nanofibre interior, (12), are defined as follows:

Arn(r; β,ω) = iβ

q2
J ′

n(q2r)af
n(β, ω)−

iωn

cq2
2r

Jn(q2r)d f
n(β, ω), (A.1)

Brn(r; β,ω) = iβ

q2
J ′

n(q2r)bf
n(β, ω)+

iωn

cq2
2r

Jn(q2r)cf
n(β, ω), (A.2)

Aθn(r; β,ω) = − iβn

q2
2r

Jn(q2r)bf
n(β, ω)−

iω

cq2
J ′

n(q2r)cf
n(β, ω), (A.3)

10
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Bθn(r; β,ω) = iβn

q2
2r

Jn(q2r)af
n(β, ω)−

iω

cq2
J ′

n(q2r)d f
n(β, ω), (A.4)

Azn(r; β,ω) = Jn(q2r)af
n(β, ω), (A.5)

Bzn(r; β,ω) = Jn(q2r)bf
n(β, ω). (A.6)

Here, the prime above the Bessel function denotes differentiation with respect to its
argument.

The coefficients af
n, bf

n, cf
n, and d f

n have been introduced in (6) and (7). They are found
from the boundary conditions for the field components at r = a and have the form

af
n(β, ω) = D1n(β, ω)

Dn(β, ω)
, (A.7)

bf
n(β, ω) = − D2n(β, ω)

Dn(β, ω)
, (A.8)

cf
n(β, ω) = D3n(β, ω)

Dn(β, ω)
, (A.9)

d f
n(β, ω) = D4n(β, ω)

Dn(β, ω)
, (A.10)

where Dn is the determinant of the matrix.

M̂n =

⎛
⎜⎜⎜⎝

Jn(q2a) 0 −H (1)
n (q1a) 0

iβn
q2

2 a
Jn(q2a) − iω

cq2
J ′

n(q2a) − iβn
q2

1 a
H (1)

n (q1a) iω
cq1

H (1)′
n (q1a)

ik2
2 c
ωq2

J ′
n(q2a) − iβn

q2
2 a

Jn(q2a) − ik2
1 c
ωq1

H (1)′
n (q1a) iβn

q2
1 a

H (1)
n (q1a)

0 Jn(q2a) 0 −H (1)
n (q1a)

⎞
⎟⎟⎟⎠ . (A.11)

In the case of TM polarization, D1n and D4n are the determinants of the matrices obtained
from M̂n by replacing the first and second columns with the column

�FTM
1n =

⎛
⎜⎝

−2iσn cosαJn(q1a)
2σn sinα[n Jn(q1a)/q1a]

2σn
√
ε1 J ′

n(q1a)
0

⎞
⎟⎠ (A.12)

respectively, and D2n and D3n are the determinants of the matrices obtained from M̂n by
replacing the first and second columns with the column

�FTM
2n =

⎛
⎜⎝

−2τn(1 − σn) cosαJn(q1a)
−2iτn(1 − σn) sinα[n Jn(q1a)/q1a]

−2iτn(1 − σn)
√
ε1 J ′

n(q1a)
0

⎞
⎟⎠ , (A.13)

respectively. In the case of TE polarization, it is necessary to use, instead of (A.12) and (A.13)6,

�FTE
1n =

⎛
⎜⎝

0
−2iτn(1 − σn)J ′

n(q1a)
−2iτn(1 − σn)

√
ε1 sinα[n Jn(q1a)/q1a]

2τn(1 − σn)
√
ε1 cosαJn(q1a)

⎞
⎟⎠ , (A.14)

and

�FTE
2n =

⎛
⎜⎝

0
−2σn J ′

n(q1a)
−2σn

√
ε1 sinα[n Jn(q1a)/q1a]

−2iσn
√
ε1 cosαJn(q1a)

⎞
⎟⎠ , (A.15)

6 In [25], the vectors �FTE
1n and �FTE

2n were interchanged by mistake.
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respectively. Besides that, we have introduced the following notations:

σn =
{

0 if n is even;

1 if n is odd,
(A.16)

and

τn =
{

1/2 if n = 0;

1 if n = 0.
(A.17)

Similar equations can be written for the functions As
μn and Bs

μn which determine the field
amplitudes outside the nanofibre. The corresponding expressions involve the Hankel functions
H (1)(q1r) instead of the Bessel functions (see [25] for details).
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